Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Fe2O3 is an appealing anode material due to its high specific capacity (1007 mAh g− 1), low cost, natural abundance, and nontoxicity. However, its unstable structure during cycling processes has hindered its potential. In this study, we present a “green” synthesis method to fabricate stable porous Fe2O3 encapsulated in a buffering hollow structure (p-Fe2O3@h-TiO2) as an effective anode material for Li-ion batteries. The synthesis process only involves glucose as an “etching” agent, without the need for organic solvents or difficult-to-control environments. Characterizations of the nanostructures, chemical compositions, crystallizations, and thermal behaviors for the intermediate/final products confirm the formation of p-Fe2O3@h-TiO2. The synthesized Fe2O3 anode material effectively accommodates volume change, decreases pulverization, and alleviates agglomeration, leading to a high capacity that is over eleven times greater than that of the as-received commercial Fe2O3 after a long cycling process. This work provides an attractive, “green” and efficient method to convert commercially abundant resources like Fe2O3 into effective electrode materials for energy storage systems.more » « less
- 
            Electrochemical energy storage devices (EESDs) are critical technologies in modern economy, covering numerous fields such as portable electronics, electric vehicles, etc. The expanding market of EESDs demands for extra requirements such as safety, environmental friendliness and low cost, in addition to increasingly enhanced electrochemical properties. Natural proteins are abundant, versatile bio-macromolecules involving tremendous amount of amino acids/functional groups/heteroatoms, which greatly benefit sustainable technologies for advancing performances of EESDs. Recent years, significant research on utilizing natural proteins including plant/animal proteins to fabricate active materials for enhancing performance of EESDs has been well reported. Therefore, it is important to comprehensively summarize the progress and achievements, analyze the advantages/challenges, and predict the prospective for future protein-based strategies toward high performance EESDs, which are the contents of this review. The protein-derived active materials include activated carbons, silicon, sulfur, metal alloys, transitional metal compounds, and nonprecious metal catalysts. The resulting EESDs are associated with Li-/Na-/K-ion batteries, metal–air batteries, and redox flow batteries, as well as supercapacitors. The contributions of proteins to stabilizing/protecting electrodes, and thus enhancing performance of EESDs are specifically emphasized. Furthermore, studies on genetical engineering of proteins for directing self-assembly of active material nanoparticles are introduced.more » « less
- 
            Despite numerous reported lithium metal batteries (LMBs) with excellent cycling performance achieved in labs, transferring the high performing LMBs from lab-scale to industrial-production remains challenging. Therefore, via imitating the stand-still process in battery production, a conventional but important procedure, to investigate the formation and evolution of a solid electrolyte interface (SEI) is particularly important for LMBs. Our previous studies indicate that zein (corn protein)-modified carbonate-ester electrolyte (the most commercialized) effectively improves the performance of LMBs through guiding Li- ions and repairing cracked SEI. Herein, we investigate the formation and evolution of the protein-modified SEIs on Li anodes by imitating the stand-still temperature and duration. A simulation study on the protein denaturation in the electrolyte under different temperatures demonstrates a highly unfolded configuration at elevated temperatures. The experiments show that this heat-treated-zein (H-zein) modified SEI forms quickly and becomes stable after a stand-still process of less than 100 min. Moreover, the H-zein SEI exhibits excellent wetting behavior with the electrolyte due to the highly unfolded protein structures with more functional groups exposed. The Li|Li cell with the H-zein SEI achieves prolonged cycling performance (>360 h vs. 260 h of the cell with the untreated-zein (U-zein) modified SEI). The LiFePO4|Li cell with the H-zein SEI shows much stable long-term cycling performance of capacity retention (70% vs. 42% of the cell with U-zein SEI) after 200 cycles. This study confirms that the appropriately treated protein is able to effectively improve the performance of LMBs, and will inspire future studies for the production process of LMBs toward their commercialization.more » « less
- 
            With plenty of charges and rich functional groups, bovine serum albumin (BSA) protein provides effective transport for multiple metallic ions inside blood vessels. Inspired by the unique ionic transport function, we develop a BSA protein coating to stabilize Li anode, regulate Li+ transport, and resolve the Li dendrite growth for Li metal batteries (LMBs). The experimental and simulation studies demonstrate that the coating has strong interactions with Li metal, increases the wetting with electrolyte, reduces the electrolyte/Li side reactions, and significantly suppresses the Li dendrite formation. As a result, the BSA coating exhibits excellent stability in the electrolyte and improves the performance of Li|Cu and Li|Li cells as well as the LiFePO4|Li batteries. This work reveals that LMBs can benefit from the biological function of BSA, i.e., special transport capability of metallic ions, and lays an important foundation in design of protein-based materials for effectively enhancing the electrochemical performance of energy storage systems.more » « less
- 
            Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytes for advancing performance of LMBs.more » « less
- 
            Abstract Low ionic conductivity is one of the main hurdles for the practical application of advanced all‐solid‐state lithium‐ion batteries. Protein‐based solid electrolytes are recently proposed and can potentially provide both high ionic conductivity and high mechanical properties due to the decoupled ion transport mechanism. In this work, the effects of lithium salts and protein structures on the performance of protein‐based electrolytes through both ab initio density functional theory calculations and experiments are systematically investigated. The results show that the anions can be strongly locked by the charged amino acids, thus providing intermediate hopping sites for lithium‐ion, reducing energy barrier for lithium‐ion transport, and then enhancing the ionic conductivity. These calculations also demonstrate that need to be locked at appropriate positions by properly controlling the protein structures in order to provide bridging effects and facilitate lithium‐ion transport. The findings are consistent with the experimental observations and can provide guidance for design and optimization of protein‐based solid electrolytes.more » « less
- 
            Low-cost and scalable superhydrophobic coating methods provide viable approaches for energy-efficient separation of immiscible liquid/liquid mixtures. A scalable photopolymerization method is developed to functionalize porous substrates with a hybrid coating of tetrapodal ZnO (T-ZnO) and polymethacrylate, which exhibits simultaneous superhydrophobicity and superoleophilicity. Here, T-ZnO serves dual purposes by (i) initiating radical photopolymerization during the fabrication process through a hole-mediated pathway and (ii) providing a hierarchical surface roughness to amplify wettability characteristics and suspend liquid droplets in the metastable Cassie—Baxter regime. Photopolymerization provides a means to finely control the conversion and spatial distribution of the formed polymer, whilst allowing for facile large-area fabrication and potential coating on heat-sensitive substrates. Coated stainless-steel meshes and filter papers with desired superhydrophobic/superoleophilic properties exhibit excellent performance in separating stratified oil/water, oil/ionic-liquid, and water/ionic-liquid mixtures as well as water-in-oil emulsions. The hybrid coating demonstrates desired mechanical robustness and chemical resistance for their long-term application in large-scale energy-efficient separation of immiscible liquid/liquid mixtures.more » « less
- 
            Electrochemical stability and delocalization of states critically impact the functions and practical applications of electronically active polymers. Incorporation of a ladder-type constitution into these polymers represents a promising strategy to enhance the aforementioned properties from a fundamental structural perspective. A series of ladder-type polyaniline-analogous polymers are designed as models to test this hypothesis and are synthesized through a facile and scalable route. Chemical and electrochemical interconversions between the fully oxidized pernigraniline state and the fully reduced leucoemeraldine state are both achieved in a highly reversible and robust manner. The protonated pernigraniline form of the ladder polymer exhibits unprecedented electrochemical stability under highly acidic and oxidative conditions, enabling the access of a near-infrared light-absorbing material with extended polaron delocalization in the solid-state. An electrochromic device composed of this ladder polymer shows distinct switching between UV- and near-infrared-absorbing states with a remarkable cyclability, meanwhile tolerating a wide operating window of 4 volts. Taken together, these results demonstrate the principle of employing a ladder-type backbone constitution to impart superior electrochemical properties into electronically active polymers.more » « less
- 
            It is urgently desired yet challenging to synthesize porous graphitic carbon (PGC) in a bottom-up manner while circumventing the need for high-temperature pyrolysis. Here we present an effective and scalable strategy to synthesize PGC through acid-mediated aldol triple condensation followed by low-temperature graphitization. The deliberate structural design enables its graphitization in situ in solution and at low pyrolysis temperature. The resulting material features ultramicroporosity characterized by a sharp pore size distribution. In addition, the pristine homogeneous composition of the reaction mixture allows for solution-processability of the material for further characterization and applications. Thin films of this PGC exhibit several orders of magnitude higher electrical conductivity compared to analogous control materials that are carbonized at the same temperatures. The integration of low-temperature graphitization and solution-processability not only allows for an energy-efficient method for the production and fabrication of PGC, but also paves the way for its wider employment in applications such as electrocatalysis, sensing, and energy storage.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
